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ABSTRACT

Asymptotic procedures are given for testing certain hypotheses con-
cerning eigenvectors and for constructing confidence regions for eigen-
vectors. These asymptotic procedures are derived under fairly general
conditions on the estimates of the matrix whose eigenvectors are of
interest. Applications of the general results to principal components

analysis and canonical variate analysis are given.

| Accession For g
NTIS GRA&I
DDC TAB
Unannounced
Justification

By
Distrihution/

_—Availability Codes
Availand/or
Dist special

f

L




1. INTRODUCTION AND SUMMARY

Let M be a (p x p) matrix which is symmetric in the metric of the
positive definite symmetric matrix [, i.e. I'M is symmetric. Let the

eigenvalues of M be represented by A, 2 AZ ST Xp. Also, let Mn be

1

a sequence of estimates of M such that an(Mn— M) converges in distribution

to a multivariate normal distribution, where a, is an increasing sequence
of real numbers, and let A be an (r X p) matrix with rank(A) = r.

i er, under the assumption that A, A. and ). F A,

In this paper, pti i-1 # i Samey G

the following null hypothesis is considered.

(1.1) HO: the columns of A lie in the subspace generated by the set of

eigenvectors of M associated with the roots Ai’ A i ainl A

i+l i+m-1"

# A,

The assumption on the eigenvalues is to be interpreted as A.
i+m—-1 i+m

when i = 1, and xi—l - liwhen itm-1 = p.

Under fairly general condition on Mn’ a consistent asymptotic chi-
square test of Ho is given. This test is based upon the asymptotic
normality of the "orthogonal" projection of the columns of A onto the
subspace generated by the eigenvectors of Mn associated with the ith to
(i+m-1)th roects of L

An asymptotic confidence region for the subspace generated by the
eigenvectors of M assoicaté? with the roots Ai’ Ai+1’ Sy Ai+m-l is
then given. This confidence region is based upon the asymptotic chi-
square test of Ho for the special case when r = m. Furthermore, an
asymptotic chi-square test is given for the hypothesis that the subspace

generated by the columns of K, a (k X p) matrix with rank(K) = k > m, con-

tains the subspace generated by the eigenvectors of M associated with the roots




L S e .. This test is constructed by relating this hypothesis

i+m-1
to a hypothesis of the form given in (1.1).

Anderson (1963) gives an asymptotic chi-square test of Ho for the
special case of m = 1 and when Mn is the sample covariance matrix from
a multivariate normal sample with population covariance matrix M. This
paper is thus a generalization of Anderson's results.

James (1977) gives an exact test for a hypothesis similar to (1.1)
when Mh is the sample covariance matrix from a multivariate normal
sample with population covariance matrix M. James considers the
hypothesis that the columns of A generate an invariant subspace of M.
His hypothesis does not state with which eigenvalues of M the invariant
space is associated. The approach used by James uses special properties

of the ample covariance matrix from a normal sample and does not

readily generalize to other matrices.

For other related works on the distributional and inferential theory
for eigenvectors, the reader is refered to Anderson (1951), Mallows (1961),
Chambers (1967), Izenman (1976) and Suguira (1976).

Applications of the general results in this paper are illustrated
through the following two examples: the principal component vectors for
the covariance matrix of a multivariate normal distribution, ahd the

canonical vectors associated with two random vectors which jointly have

-

a multivariate normal distribution.
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2. PRELIMINARIES

In this section, let S be a {q X q) real matrix which is symmetric in

the metric of a real positive definite symmetric matrix T. In order to

establish notation and vocabulary, the eigenvalue problem for S is briefly re-

viewed below. A more detailed review can be found ian Kato (1966) or

Nerring (1970).

If Sx = Ax for some x # 0, then A.is an eigenvalue of S and x is an eigenvector

of S associated with A. All eigenvalues of S are real. The spectral set
of S, denoted 8, is the set of all eigenvalues of S. Eigenvalues of

"symmetric'" matrices have the following important continuity property.

LEMMA 2.1. 1If the (q * q) matrix S, is symmetric in the metric of

k

Tk, with eigenvalues Al(Sk) > AZ(Sk) B Aq(sk), and Sk > S as

k > =, then A.(S. ) > A.(S) as k > .
] k ]

The eigenspace of S associated with A is V(A) = {x € Rq

[ sx = :\':::_},
where Rq is the set of all q-dimensional real vectors. The dimension of
V(1) is the multiplicity of A, say m(A). If X and u are two distinct
eigenvalues of M, then V(A) and V(u) are orthogonal subspaces in the metric
of T. That is, if x € V(L) and A v(u), then 5'2y = 0.

Since S is symmetric in the metric of T, we have the decomposition,

rd

= EAGSV(X).' The eigenprojection of S associated with A, denoted P()),
is the projection operator onto V()A) with respect to this decomposition

of RY. 1f v is any subset of the spectral set S, then the total eigen-

projection for S associated with the eigenvalues in vV is defined to be

Lyey P(A), For any set of vectors {éj} in V(A) such that
€
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(2.2)

EjTgk = ij' where ij denotes the Kronecker delta, P(A) has the

: A
representation P(A) = Z?il)i'ftr' Thus P(1) is symmetric in the metric
of T.

The spectral decomposition of S is § = ZleslP(R)' If all the eigen-

values of S are noa-negative, then the square root of S is to be defined

¥ _ %
as S° = ersk P(N).

A generalized inverse of S is any S~ such that SS S = S. The Moore-

Penrcse generalized inverse of S, denoted by S+, can be represented by

+ _ -1
§ = Iyes, a0 2 P

In working with random matrices, it is necessary to introduce the

following notation. If B is a (b * t) matrix, then vec(B) is the

transformation of B into a bt-dimensional vector in the following fashion.

.Let Bi= [gl 32 e Et]’ where Ej is the jth column of B, then

b
=l

T o

(2.1) vec(B) = ZA.

b

t
L

If B is a (b x t) matrix and C is a (¢ X u) matrix, then the
Kronecker product of B and C is the (bc X tu) partitioned matrix
B®cC = [b,cl 5=1,2, ..., bandk=1,2, ..., t with j varying
over rows of matrices and k varying over columns of matrices.

An important progerty relating the "vec" transformation and the

Kronecker product is

vec(BCD) = (D' @ B)vec(C),

e i ]



where the dimensions of the matrices B, C, and D are such that the multi-

plications are propefly defined. Other properties of the '"vec" transfor-

mation and the Kronecker product can be found in Neudecker (1968, 1969).
The commutation matrix or permuted identity matrix is the (ab x ab)

matrix I(a,b) = Z§=lz?=lgij ®@ E;j,-where Eij is an (a X b) matrix with

a one in the (i,j) position and zeroes elsewhere. The commutation matrix

has been extensively investigated recently by Magunus and Neudecker (1979).

Two important properties of the commutation matrix are

(2.}) I(a b) vec(B) = vec(B'), and

3

(2.4) I(a’b) (c®@D)=00® C)I(C’ 4’

where B is (b *x a), C is (b x d), and D is (a x ¢).

If Y is a random vector, let var(Y) represent the covarinace-

matrix of Y. If B is a random matrix, then for convenience, var[vec(B)]

is to be written as var(B).

3. ASSUMPTIONS

In order to form an asymptotic test for (l1.1), a sequence of estimators

M for M are needed which satisfies the following assumptions.

ASSUMPTION 3.1.

(i) Mn is symmetric in the metric of Pn, a positive definite sym-
metric matrix, with Fn + T in probability.
(ii) aﬂ(Mn-M) + N in distribution, where a is an increasing se-
quence of positive numbers such that a > ® as n > and N is a multi~-
variate normal matrix with zero mean and var(N) = [. 2

(iii) For B which is (p x p), Ivec(I'B) = 0 implies M(B + B') = 0.

m—— W




It is also necessary to have a sequence of estimators In for I which
satisfies the following properties.

ASSUMPTION 3.2

(1) In is symmetric and positive semi-definite.

(i1) In + I in probability.

(iii) Let Qn = {Invec(FnB) = 0 implies Mn(B + B"') = 0} then

Prob( ) - 1.
: n

Finally, it is to be understood that the asymptotic procedures given

in this paper are only defined on the set

5 A A s
S50 PSR R G T T
A A A
where Al > AZ B 2 Xp are the eigenvalues of Mn. It is irrelevant

to the asymptotic properties of the procedures what action is taken on
the complement of Cn’ since by the continuity of the eigenvalues of

"symmetric" matrices, that is Lemma 2.1, Prob[Cn] > 1.

4. ASYMPTOTIC DISTRIBUTION OF THE EIGENPROJECTION

Kol
2o } and let w =" {)

Let w= {\., A sl

A }
3 i+l’ e '

i+1’ i+m-1

Also, for A an eigenvalue of M, let Pk represent the eigenprojection of
M associated with A, and let QA = (M - XI)+. For A an eigenvalue of

A
Mn, let PA represent the eigenprojection of Mn associated with A, and

A A A
let Q, = (M_ - AD)*. For convenience, define P_ = Z, P, and P =L
A n o Aew A o

P

Po represents the total eigenprojection of M associated with the eigenvalues

W,




A
of M in w, and P0 represents the total eigenprojection of M associated
n

. 5 oo
with the eigenvalues of Mn in w.

The null hypotheses (1.1) can thus be rephrased as

(4.1) H:P A=A
o o

where A is (p x r) with rank(A) = r.

A natural statistic to consider in testing Ho is (QOA - A). In
obtaining the asymptotic distribution of this statistic, the Taylor
series expansion of go about Po is to be used. This expansion is given

in the following lemma. The lemma is a simplified version of more

general results given in Chapter 2 of Kato (1966). A proof of this

simplified version can be found in Appendix B of the author's dissertation.

= 1 = - - = A, = >\
LEMMA 4.1. Let d =min{X, - A, A, .- A '}, andd (

. -1 y
Also define the norm |[B|| = [max eigenvalue( "B'[B)I”.
1f lan - M| s d°/2, then
P =p -%

o o

rewt A MIQ + QO OB\ ] + E

2 -1
where ”Enll < (1 + dlldo)(leMn-MII/do) K1 ZIIMn-MH/do) .

This lemma immediately yields the following limiting distribution,
A
4.2 4 3
e a (P = P) >N =-L, [PNQ +QNe,]

A
in disrrihution. So, under Ho, an(PoA - A) » NOA in distribution, with

the covariance matrix of NoA being

1 i i+m-1

e e S ]

-




(4.4) T (A) = A'JA , where
o (o] o

a =-10 PO (I-P)QIA@ 1) =12, I

£ e '
s _x¢w(’\ u) P)‘AQ Pu .

A
In the next section, the asymptotic normality of an(PoA - A) is to be used
in forming an asymptotic chi-square test. Before doing so, the rank of

IO(A) is needed.

THEOREM 4.2. 1If the columns of A are in the range of Po, then

tank[lo(A)l = (p-m)r.

PROOF. The proof consists of determining the null space of io(A).

For G which is (p x 1), [vec(FG)]'Zo(A) vec(TG) = [vec(TB)]'Ivec(TB),

where B = I (X—u)-lPuGA'PA. So by Assumption 2.1.iii, Ib(A)vec(FG) =0

Aewzu&w
implies M(B + B') = 0, which implies PuC =0 for p 4 w.

The last implication is justified by the following contrapositive

argument. Suppose U & w and PuG # 0. Case I: 0 ¢ w.

1 1

M(B + B')Pu = (Z)\waa—u)' PA)AG'PU # 0 since rank[(Z)\Ew)\(X'u)- P/\)A =r.

. 1y = iy L
Case II: 0 € w. PHM(B + B'") uPuGA'(zkcw(l u) PX) #0

The converse, that is PpG = 0 for all p ¢ w implies IO(A)vec(TC) =200

is obviously true. Thus, the null space of ZO(A) is n = {vec(FG)i(L-PO)G = 0}.

Thus, dimension(n) = mr, and so rankClo(A)J = (p-m)r.

5. AN ASYMPTOTIC CHI-SQUARE TEST

In this section, an asymptotic chi-square test of Ho is given which

A
is based upon the asymptotic normality of an(PoA - A). Due to the

singularity of Ib(A), the chi-square test and its properties are not
straightforward. So, for clarity, most proofs for this section are

given in the appendix.

A




THEOREM 5.1. Let
A S A A A A AR )
= ' o L !
I,(a A'@DILL, AP, @Q(1-P )T (X, AP, @ (I-P))Q1(AQ 1),
A = A
and let [IO(A)] represent any generalized inverses of ZO(A).

Also, define T (A) = az{vec[(g - I)A]P[£ (A)]_vec[(g - I)A].
n n ) o o

Then, under H , T (A) - X2 in distribution.
o’ m r(p-m)

PROOF. See the appendix.

Theorem 5 states that the limiting distribution of Tn(A) under Ho
A
does not depend upon the choice of generalized inverses for io(A). The
next theorem states that asymptotically the value of Tn(A) does not depend

A
upon the choice of the generalized inverses for EO(A).

THEOREM 5.2. Let Tn(A) be defined as_in Theorem 5.1.

(i) On the set {rank(soA) =r}, Tn(A) is invariant under different
choices of a generalized inverse for eo(A).

(ii) Whether or not Ho is true, Prob[rank(soA) =] M-t

PROOF. See the appendix.

A
So, on the set {rank(PoA) =r}, Tn(A) is unique and the Moore-
A
Penrose inverse for IO(A) can thus be used on this set. In addition, if

M is symmetric, then Tn(A) has the representation
a

A
(5.1) T (a) = aicvec(A)J'Exom)J"vec(A)

—10 -
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A
on the set {rank(PoA) = r}. This statement is justified by noting that

: . . : + o
for a symmetric matrix B, Bx = Q if and only if B x = 0, and it is easy

to verify that %o(A)VEC(SoA) 0.

Now, application of Theorems 5.1 and 5.2 gives the following asymptotic
@ level test of Ho.
(5.2) Reject Ho if

A
(1) rank(PoA) < r. or

(ii) rank(goA) = r and Tn(A) > xi(p-m)(a)’

where Xi(u) is the (l-a) percentile of a Xi distribution.

By Theorem 5.2.ii, it is irrelevant to the asymptotic properties of
a test of Ho what action is taken on the set {rank(soA) < r}. However,
rejecting H for this case enables the rejection region to be "continuous"

A
in the sense that for any sequence {Ak} such that rank(PoAk) = r and A, > A,

k
A
where rank(?oA) < r, then

(5.3) T (A ) >, as k > =,
n k

The proof of property (5.3) is given in the appendix. Property (5.3) is
important when using the test defined by (5.2) for constructing confidence
regions for the range of Po' This is done in the next section.

Although the test of Ho defined by (5.2) was intuitively motivated,

it does have the following important properties.

THEOREM 5.3
(i) (5.2) is a consistent test of Ho. That is, if Ho is not true,
then Problrejecting H°] > 1.
(ii) (5.2) is invariant under post-multiplication of A by a non-
singular matrix.

PROOF. See the appendix.

SR—




Theorem 5.3.i1 is important since the hypothesis Ho is invariant under
post-multiplication of A by a non-singular matrix. Thus, the test given
by (5.2) tests whether the space spanned by the columns of A is a

subspace of the range of PO.

REMARK 1. If the assumption Ai—l # Ai or the assumption Ai # A

+m-1 i+m

is false, then the asymptotic chi-square test given by (5.2) is not

generally valid. If the assumptions on the eigenvalues are trueLthenrby Lemma
4.1, the "sample'" size n necessary to insure that the asymptotic chi-

square test is a ''good" approximation is in general inversely related to

the qugntity min(li_l- Xi’Ki+m-1 - Ai+m)” In addition, if ki—l is "close"

to Xi, one may not wish to study the eigenspace associated with Ai-l
separately from the eigenspace associated with Ai' So, in practice,
before determining which eigenspaces are of interest, a study of the

eigenvalues would be desirable.

REMARK 2. Let v = {kj, j € 1}, where I is some index set. Under

the assumption Aj # Ak for all j € I and k ¢ I, consider the h}pothesis

(5.4) HO: the columns of A lie in the subspace generated by the

eigenvectors of M associated with {Aj, j €1},

where A is (p X r) with rank(A) = r € m = rank(ZAEvPA). This hypothesis

can be tested by using the test given by (5.2) provided w is replaced by

A, A A
v and w is replaced by v = {lj, j« L),

REMARK 3. Und th i : 1
nder the assumption A1-1 # Ai and Ai+m—1 # A, g consider

the hypothesis

(5.5) HO: the eigenvectors of M associated with the roots A.,A.

lie in the subspace generated by the columns of A,

-12.—
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where A is (p % r) with rank(A) = r > m. This hypothesis can be tested
by using the following approach. Let 3 be [p x (p-r)] with rank(3) = p-r

and such that A'B = 0. The hypothesis (5.5) can then be rephrased as

(5.6) Ho: the columns of B lie in the subspace generated by the

eigenvectors of M' associated with the eigenvalues

AI,AZ,...,A. Bl g,

i-1’"i+m p

Note that if M is symmetric in the metric of I', then M' is symmetric in ‘
the metric of P-l. It is easy to verify that if the conditions on M, T,

Mo Fn, I and In giyen by Assumptions 3.1 and 3.2 are satisfied, then

the conditions are satisfied when M, f, Mn’ Fn, I and in are replaced by

MJ’ F—l

: M;, F;l, var(N') = I(p,p) I I(p,p) and I(p,p) In I(p,p) respec—
tively. So, by remark 2, the results of this section apply to
testing the hypothesis (5.6),

Note that if r = m, then the hypothesis (1.1) and (5.5) are equivalent.
For this case, the test given by (5.2) when applied to the‘hypothesis

(1.1) is the same as the test for (5.5) suggested in this remark.

6. ASYMPTOTIC CONFIDENCE REGIONS

For A which is (p x m), let L(A) represent the space spanned by the

columns of A. That is,
P m
L(A) = {y e R" | ¥y = Aw for some weR }.

The test of hypothesis (1.1), when r = m, given by (5.2) yields the !

following asymptotic (l1-a) confidence region for the range of Po' 3
; 2
(6.1) {L(A) | A is (p x m), rank(A) = m, and Tn(A) < xm(p_m)(a)}.
-13_
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One "undesirable" aspect of tnis confidence region is that Tn(A)
involves a generalized inverse of £°(A), which must be recalculated for
each A. However, this problem can be alleviated and the confidence
region can be given a simplier representation.

To make the simplification, let

A A A
(6.2) X = [5i X X om-130
A : s A ALA Ao A
where {x.} is defined such that M x. = A.x., and x'T x = §... By
= furel n~j 3 ~) otk 1]

A
noting that P = angfn, it can then be easily verified that
I(a)=@TXx O@DI x)X'TA®I).
) n'n o'n""an

So, by Theorem 5.3.ii, if rank(ﬁoA) = m, then

ye ail 2 - -
T (4) = T [ACXT &) 7] = an{vec[A(Xr‘lI‘nA) i xn]}’xo(xn)"vecCA(xr’lrnA) b X 1.

Thus, (6.1) can be rewritten as

(6.3) {L(a) | X;FnA = 1 and aiﬁvec(A—xn)]'Io(Xn)+vec(A-Xn) < xi(P_m)(a)}.

For the special case m = 1, (6.3) reduces to

2 5 Boihh nia®s A 2
(6.4) {zg | ;T a=1, and a (3 5i)'An(§ x;) < Xp_l(a)},
- A B A g 1l e
where A = [x!® (M -A,1)71f [x. @ 1'-A. D",

1f M and M are symmetric, (6.3) and (6.4) respectively reduce to

(6.5) {L(A) | XA = T and a’lvec(A)]'S_(x )*[vec(a)] < sz(p-m‘“)}'

and

A, - 2 4a® 2
(6.6) {ea | x}a =1, and a_a Aa < xp_l(a)},

A
where A = (&1 ® (1 -A;D*11 (4, @ (u A D).

-1“-




7. EXAMPLES

1) PRINCICAL COMPONENTS ANALYSIS. One of the most common uses
of eigenvectors in statistics is in the principal components analysis
of a covariance matrix for a multivariate normal distribution. For
this case, Mn is taken to be the sample covariance matrix from a sample
of size n from a multivariate normal distribution with nomsingular
covariance matrix M. That is, M = (l/n)22=1(xi-g)(z - ¥)', where
b

Y.:-
~1°%2’

It is well-known that /H(Mn~M) + N in distribution, where vec(N)

"’xn are i.i.d. Normal(u, M).

has a multivariate normal distribution with zero mean and

covariance matrix I = (I + I( Y(M @ M). (See Izenman (1976) or

p,p)

Magnus and Neudecker (1979).) Choose In = (1 + I(P )(Mn®Mn).

»P)
It can then be verified that Assumptions 3.1 and 3.2 are satisfied, and
so the results of this paper apply to this example.

A
On the set rank(PoA) = r, we have the representation

- -1 A 13 .1 -1
(7.1) Tn(A) n 'zu&G U Trace{a PuA[A xnnn(u)an] i

where Xn is defined in (6.2) and Dn(u) is an (m x m) diagonal matrix
A N
with entries Xj/(lj-u)z, j = i,i+l,...,i+m-1. For the important case

r =m, (7.1) becomes
(7.2) T (A) =n Ttace{A'M;IA(X:‘A)-IQ,‘(A'Xn)-I +

A"MA(K"A)'1A;1(A‘xn)‘1 - ZA"A(X;A)(A"XR)—I}.
A

A

A
where A is an (m x m) diagonal matrix with entries A.,A. _,...,A, .
n i 1+l i+m-1

i
3
3
§

In particular, for m = 1, (7.2) becomes

8 “l Al ' v )2
- 1 ' - :
(7.3) Tn(g) n[Xié M s+ Ai a'Ma 22'al/ (2 x;

-15-




Under the null hypothesis, this statistic is asymptotically equivalent
to the test statistic given by Anderson (1963). Anderson's statistic is
A -1 A
r ' o
(7.4) n[kig M Ta+Aa'Ma 21,

5

with a normalized such that a’a

II) CANONICAL ANALYSIS. Another common use of eigenvectors in
statistics is in the canonical analysis of the joint covariance

matrix for two random vectors which are jointly multivariate normal.

For this case, M = 3‘13 3-13 and M = C-lc C-lc where
n 11712722721 11712 22 21"
c. ¢ c..c
¢ - 611 212 sara C11 c12
21 722 21 22

C_ represents the sample covariance matrix for a sample of size n from
n
a (p * q) multivariate normal vector with nomsingular covariince matrix C.

A
For this example, I' = C__ and Tn =C ..

11 11
' By expanding Mn in a Taylor series about C, we note that /E(Mn - M) >N

in distribution, where vec{N) has a multivariate normal distribution

with mean zero and covariance matrix

(7.5) I =T(1-w) ® I ' + raun®) @ ricr-an")

* Tpy oy {TW @ ar-0n'1h) + () @ (1))
Choose In to have the same fprm as I with Fn and M replacing I and

M respectively. For C12 # 0, it can be verified that Assumptions 3.1

and 3.2 are satisfied, and so the results of this paper apply to this
example.

A
On the set rank(PoA) = r, we have the representation

& tn A ’ ' -1
(7.6) Tn(A) n Eutc Trace{A PnPuA[A rnxnnn(u)xnrnAJ }

-16-
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where D (1) is an (m x m) diagonal matrix with entri-s

A A A A DL AR ;
(1->\.)(u+>\j-2u>\j)/(>\j'u) s § = i,i+l,...,i+m-1.
j

In particular, for wm = 1, (7.6) becoues

(7.7 T AR = g% (A I L0120 00 » hdT atihots T £9%.
n n n 1 1 n 1 1 n~i

-17-
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APPENDIX

In this appendix, the proofs for section 5 are given. These
proofs are given in the same order in which they appear in section 5
with the exception that the proof for Theorem 5.1 follows the proof for
Theorem 5.2.

Before presenting the proofs, the following lemmas concerning

quadratic forms involving singular matrices are needed.

LEMMA A.1. Let S be a positive semi-definite symmetric matrix

of order (s x s), x € range(S), and B a (s x k) matrix with rank(B) = k,

~

then (i) E'B(B'SB)-Blg is invariant with respect to the choice of the
generalized inverse for B'SB.

(ii) x'B(B'SB) B'x < x'S x, with equality if k = s.

LEMMA A.2. For Xn' an s-dimensional random vector, if

(1) Xn + Normal(0,S) in distribution, with rank(S) = r,
(ii) o in probability,
(iii) rank(Sn) + r in probability, and

(iv) Probfzn € range(sn)] +>1,

then for any sequence of generalized inverses for Sn,

— Z 5 s .
L
Y'S Y - x_.1in distribution.

LEMMA A.3. Let Sn and S be random matrices such that Sn + S in
distribution. 1If rank(S) = r almost surely, and rank(sn) < r, then

rank(sn) + r in probability. Alternatively, Prob[rank(sn) .l w k.

-18_
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The proof for Lemma A.l is straight forward and can be found in Appendix
C of the author's dissertation. Lemma A.2 is a corrected version of
Theorem 1.b given by Moore (1977). Proof's for Lemmas A.2 and A.3
can also be found in Appendix C of the author's dissertation.

Finally, the following special case of the theorem given by Okamoto

(1973) is needed before the proofs for section 5 can be given.

LEMMA A.4. If B is a (k} x k,) random matrix such that

vec(B) ~ Hormal(Q,S) with rank(S) = klkz, then rank(B) = min(kl,kz) almost

surely.

- . A A. A
Proof of Theorem 5.2.i. By noting that IO(A) = IO(POA) is a sample

version of IO(A) in Theorem 4.2, we obtain
A

(A.1) rank[Io(A)] = (p~m)r,

A A
whenever rank(PoA) = r. It is then easy to verify that if rank(P A) = r,

. o
A A

then range[IO(A)] = range[I @ (I-Po)]. So, by noting that

A
(1® (x-?onvecm-ﬁom = vec[(I-P_)Al, we have

; A
(A.2) if rank(PoA) = r, then vecE(I-So)A] is in range[f (a)l.
. o

The proof for Theorem 5.2.i is completed by applying Lemma A.l.i to

Tn(A). using B = I.

A
Proof of Theorem 5.2.ii. Let r, = rank(PoA), and let G1 and G1 be

the total eigenprojections associated with the T largest eigeavalues of

- A A A A
A'P;PPOA and A'P;FPOA respectively. Also, let G = I-G, and Go = I-G

1 o

- A K o K N A A A A,
By noting that (P AC.) T(P AG ) = 0 and (P _AG )(P AG,) =0, we have
o 1 o o ¢ o o 1

A A A A A - A A A A A A
rank(P A) = rank(P AG ) + rank(P AG,). Now, since rank(P AG ) = rank(G'A'P'TP AG.)
o o o o 1 o 1 ) Q o 1

A A KA
and GiA'P;rPoAGI > A'P;YPOA in probability, it follows from the

=19~
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conrinuity of eicenvalues of symmetric matrices that |
rank(goAél) > in probability. So, we only need to show that

A A
rank(PoAGO) + (r*rl) in probability.

To show this, using Lemma 4.1, we obtain the Taylor series

A A A
G =G -G (A'P'TP A - A'P'TP A)(a'P' P &) ‘
(o] o [o] 0 (o] o o o o

N +, 1A A t 1 -2
- (A POI'POA) (A POLPOA A POI'POA)GO + o(an e

A

Using this expansion, and the expansion for Po given by Lemma 4.1,
we obtain

) P AG I, P,NQ,AC

> W = -
i3 an(PoAGo) " o U T N
- < - - 1_1 £
in distribution, where B. = [P - P A(APTP A) AP T]
o ) ) o o )

Noting that Go and B are projections with rank(G ) = (r-rl) and

rank(Bg) = (m-rl), we can choose matrices C, and C_, of dimension

1 2
{r x (t—rl)] and [p x (m-tl)] respectively, such that rank(Cl) = (r-rl),

rank(Cz) = (m-rl), GOC C.. 1t can then be shown that

1 2

for any [(r-rl) x (m-rl)] matrix C,

=C_  and B C
1 o2

[}

(A.4) var{[vec(C)J'vec(CéFWCl)} [VeC(rCO)]'Ivec(Fco),

where ¢, - ZASwPACZCCiAQi. For C # 0, (A.4) is positive. This follows

by noting that ZAEwZu&wu-1(u-X)PpM(C°+C;)Pi = ACICC; # 0, and so
M(C°+C;) # 0. Thus, by Assumption 3.1.iii, (A.4) is not zero.

Since (A.4) is positive for C # 0, this implies that
rank[var(CéFWCl)] = (m-rl)(r-rl). So, by Lemma A.4, rank(céfwcl) = (r-rl)
almost surely. Also, siuce (r-rl) > rank(W) 2 rank(CéfWCl), the rank

of W is almost surely equal to (r-rl).

-20-

3 .
T e e e AT T b S PR
o o SR 4&&«;«3?” .»:.,s‘livfg?.ewv"_“?f*‘-- M o AV S

e g




| A A A A A

| (4.6) 112800y Taeh()3(@: BB @ Bg - dOLLE, 5 By © Tg he,)RellIT, !
s gu(u) b 0, A

| < B30 ety e A A - dasw.

i

|
‘f

The proof to Theorem 5.2.ii is completed by noting that )

AR 4
rank(a P AG ) < (r-rl), and then applying Lemma A.3.
no o

Proof of Theorem 5.1. This proof consists of showing that the cui-

ditions of Lemma A.2 are satisfied when using anvec[(go-I)A] for r F
and QO(A) for Sn. Condition (i) follows from (A.2). Condition (iv) |
follows from (A.2) and Theorem 5.2.ii. If condition (ii) is satisfied, |
then condition (iii) follows from (A.l) and Lemma A.3. So, it only ‘j
needs to be shown that condition (ii) is satisfied, that is, to show |
that io(A) = IO(A) in probability. Since In + I in probability, it
is sufficient to prove that

A ' A A ]
(A.5) I A Pxe Q(I-R ) ~ I, P} ® Q,(1-P ),

in probability.
Before probing (A.5), additional notation is needed. 1If

Aa—l # Aa e ahes Aa+b # Aa+b+1’ then define Z(Xa) =a, u(d)) = a+b, m(ka) = b+l

FEREhe

a a+b

and Q(Ka) }. Also, define d(A,u) = (l-u)-l, and for A

and U which are eigenvalues of M, define

A A
d(i,u) = [Z;iégA)ZZLEEH)d(Aj,XR)J/Em(A)m(H)], provided A # u. By the continuity

A
of eigenvalues, that is Lemma 2.1, we note that d(A,pu) + d(X,u) in probability.
: A A
Also, if a € w(A) and B ¢ w(u), then d(a,B) = d(A,u) in probability.
So, if we define the norm on all (px p) matrices

1

llBIIG = [max eigenvalue of G B'GB]%, where G is a symmetric positive definite

Rt
(Y

matrix of order (px p), then




By the arguments of the previous paragraph, it follows that the right-

hand side of (A.6) goes to zero in probability. Note that if IIBnlIr =+ 0
n

in probability, then lanllr - 0 in probability, since Fn + T in probability.

So, the left-hand side of (A.6) goes to zero in probability if the norm
Il-llp are replaced by [l-llr.
a

A
Thus, since by (4.2) zaee(k)Pa > Py in probability, we have

A A A
(A.7) = d(a,B)P; ® PB gl ZkewZUQWd(A’U)PX ® PU i

e b ne A Y ety

in probability. The proof of Theorem 5.1 is completed by noting that
the left and right hand sides of statement (A.7) are the same as the left

and right hand sides of statement (A.5) respectively.

A
Proof of statement (5.3). Let . rank(PoA), and let B be a

]
o

~ A
Cr x (r-r )] matrix with raok(B) = r-r_ and such that P AB By

(A.2), we can apply Lemma A.l.ii and A.l.iii to obtain

Roavy 32puts |
(A.8) Tn(Ak) 2 Tn(AkB) 2 a (pb) [gkIO(AkB)p_k] 5

A A
where Rk = vecE(Po-I)AkB]. As k +> @, io(AkB) + 0 and gk + vec(-AB),which

is non-zero. Thus, the right-hand side of (A.8) goes to infinity.

- . A
Proof of Theorem 5.3.i. By Theorem 5.2.i, Prob[rank(PoA) <rl]->0.

Thus, we only need to show that if Ho is false, then

. A
Problrank(P A) = r, Tn(A) > ¢] +» 1, for any constant c. By (A.2), we can
o -

apply Lemma A.1.iii to obtain

2, v 2¢ 2R L
A.9
(A.9) T (A) 2 a (¢ c) Le i (8 1,

A A 5
where - vecC(?oqa)A]. Note that the proof for xo(A) converging to

f (A) in probability given in the proof for Theorem 5.1 does not depend
o

-22-




on the truth of Ho. So, since g, converges in probability to vec[(Po-I)A],
which is non-zero, it follows that the probability the right-hand side of

(A.9) is greater than any fixed constant ¢ goes to one.

Proof of Theorem 5.3ii. Let B be an (r * r) non-singular matrix. Vo

A A
If rank(PoA) = r, then rank(PoAB) = r. Also, by (A.2) and Lemma A.l.1i, b

we have T (AB) = T (A).
n n

—
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